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Abstract

Various methods of linearising yield condition and

flow rule are discussed in connection with problems in finite

plastic strains (drawing of tubes, nosing of shells). The

numerical results presented in this paper show that, when

carefully handled, some of these methods give excellent approxi-

mations to the predictions of von Mises theory, which will

usually involve more elaborate analysis.
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Linearization in Problems of Finite Plastic Flow

By Manohar Singh (Brown University)

1. Introduction

The oldest yield condition in the theory of

plasticity is that of Tresca [1]**. When the principal stresses

are used as rectangular co-ordinates in a three-dimensional stress

space, it is represented by a regular hexagonal prism. As long as

the variations of stress in a problem are such that the stress

point remains restricted to one face of this prism, the linear

character of the yield condition greatly simplifies the mathemat-

ical analysis. The complications that arise when several faces

must be considered In the solution of a problem induced

von Mises [2] to suggest that the prism be approximated by the

inscribed circular cylinder. Later experiments showed that the

resulting non-linear yield condition, which was introduced for

mathematical convenience, actually describes the behaviour of

plastic metals better than the piecewise linear yield condition

of Tresca. On the other hand, the hope that a single non-linear

expression would be less unwieldy than six linear expressions

The results cominoated in this paper were obtained in the
course of research sponsored by the Office of Naval Research
under Contract Nonr 562(10o with Brown University.

Numbers in square brackets refer to the Bibliography at the
end of the paper.
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did not, on the whole, prove justified, and linearised yield condi-

tions have been used in the solution of many problems in

plasticity.

In the early stages of plasticity, yield condition

and flow rule were viewed as independent components of the theory,

and investigators felt free to use the flow rule of Saint Venant

and Levy [3] with whatever yield condition proved convenient in

the solution of a problem. Recent work on limit analysis, however,

has suggested the connection between yield condition and flow rule

that is expressed by the principle of maximum plastic dissipation

[4]. If this principle is accepted, linearisation of the yield

condition should be accompanied by a change in flow rule that

maintains the validity of this principle. While this "Joint

linearisation of yield condition and flow rule" has been widely

used in limit analysis and design (5], relatively few problems

of finite plastic flow have been treated in this manner. In this

paper, some problems of this kind will be solved for a material

obeying the yield condition of von Muses and the flow rule of

Saint Venant and Levy, and the solutions will be compared to those

obtained by various joint linearisations of yield condition and

flow rule.
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PART I. Drawing of thin-walled tube through a conical die.

2. The problem.

In considering the drawing of a rigid, perfectly

plastic thin-walled tube through a well-lubricated conical die

(Fig. 1), we shall restrict the discussion to the steady state

of plastic flow and assume that the wall thickness is small in

comparison to the length of contact with the die. The variation

of stress across the thickness of the wall will therefore be

neglected. On account of the rotational symmetry of the problem

and the absence of shearing stresses between tube and die, the

normals to the meridional planes and to the die surface indicate

principal directions of stress.

Subject to later confirmation by the numerical

results, it will be assumed that the normal pressure p between

the tube and die is small in comparison to the meridional stress

d or the circumferential stress d2P so that a yield condition

for plane stress and the corresponding flow rule will be

appropriate. Since several yield conditions will be used, we

shall establish the basic equations for an arbitrary yield condi-

tion written as

F(csd - 0. (2.1)

In view of the rotational symmetry of the problem,

and since the variations of I and 02 across the wall thickness

are neglected, these principal stresses depend only on the

distance s measured along the die. With the notations in Fig. I,
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equilibrium in the meridional direction requires that

Z. (d1hr) + 62 h sin a - 0. (2.2)

Since s (2.3)

we may alternatively consider 61162 and h as functions of r to

write (2.2) in the form

r dh6 d61
h dr SI + r + (d1-d2 ) 0. (2.4)

Since the considered rigid, perfectly plastic

material lacks viscosity, the "time" used in the definition of

the strain rates may be any quantity that increases monotonically

during the motion of the typical particle along the die. We

take this quantity to be -r and denote by v the radial "velocity"

component of the particle. The "strain rates" in the meridional,

circumferential, and thickness directions are then given by

= -£; ; = - ; iM dh/dt vdh (2.5)

1 dr' 2 r 3 nh d r *

No comments are needed regarding the first two relations (2.5).

In deriving the last, use has been made of the facts that the

flow is stationary (ah/Zt = 0) and that the "velocity" v has

been defined with respect to the "time" -r. As is customary in

the theory of plasticity, the material will be treated as

incompressible. The incompressibility condition ; i+;2+3 = 0

and the relations (2.5) furnish

vdh+ + 0  (2.6)
T iTF dr F
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Finally, the flow rule implied by the principal of maximum plastic

dissipation requires that

-~ 2 (2.7)T1 2

wherever the yield function F is continuously differentiable.

The co-efficient of proportionality X in (2.7) is non-negative;

it is not a characteristic constant of the material but a

parameter that must be eliminated from the equations.

The boundary conditions for the problem under

consideration are

d 1 - 0 , h = ho, v = v. for r=a=l. (2.8)

We are now in a position to consider various yield

conditions.

3. Y.eld condition of von Mises.

For plane stress, the yield condition of von Mises

takes the form

F a d2 _ d d + d2  
= 0 (3.1)

1 1 2 2 0

where o is the yield stress in simple tension. Equation (3.1)

may be re-written as

. 2 2 -61 ) 2 1 3o -1 - o. (3.2)

Kith the urie of (3.1) and (2.5), the flow rule (2.7) furnishes

dv M 201-2 v (3.3)
TO' 2c 2-1 r
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It follows from (3.3) and (2.6) that

r dh +d2(3)
R r 2o2-ol

Equations (2.4), (3.2) and (3.4) constitute a system with three

unknown functions of r, namely 61, 02, and h.

Stresses. Substituting from (3.4) into (2.1), one finds the

relation
ddI  2d2

r d3- - 225)

which, on using (3.2), becomes

r - + 0(3.6)dr -[1o
2 _3cs2J*(36
0 1

In the stress space with the rectangular Cartesian

coordinates 6ld2, equation (3.1) is represented by an ellipse

(Fig. 2a). The point A corresponds to the state of stress at

the die entrance where dI - 0 and 62 < 0, and the point B corre-

sponds to the die exit. The position of the point B is restricted

to the arc AA,. Indeed, at A', the tangent to the yield ellipse

F-0 is parallel to d2 -axiso so that (bV/B6)/(bF/ao2 ) - '1/'2

becomes infinite. Since ;2 - - _ cannot vanish if the tube is

to move through the die, this means that i. would have to be

infinite, so that the neglection of strain rate effects would

no longer be Justified as the stress point approaches At.

Since 262-d1 < 0 on the arc AA', equation (3.5)

showa r dei/dr to be negative. Accordingly, the minus sign applies
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in (3.6). Integrating this differential equation for d1 and

using the boundary condition d1 -0 for r-aml, we obtain

1 01 [1 - j(d1) 2J 1f+ r sin( d 1- (37
S T_ arc 0) - log r

This equation specifies the radius r at which a given value of

d1/d0 occurs, and the yield condition (3.2) gives the correspond-

ing value of d2/d0 as

02 0 0 do

Note that the plots of d1/ 0 and ° versus r (heavy lines in

Figs. 3 and 4) are independent of the exit radius b of the die.

We now examine the limit set for the value of the

exit radius b by the fact that the stress point in Fig. 2b should

remain on the arc AA'. At At, where 202-d1 - 01 equation (3.2)

shows 01/do to have the value -2 - 1.15470. Substituting this

value into (3.7), we obtain r - 0.40377. The present analysis

therefore requires that the exit radius b of the die be larger

than 0.40377.

Thickness Changes. Substituting from (3.6) into (3.4) and

integrating under the bournay condition h-ho, 01-0 for r-ali,

we obtain

log M" -C() + 2 log r]. (3.9)

Velocity Distribution. Substituting for dr/r from (3.6) and 02

from (3.8) into (3.3)o we find
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-v 1 I o- i '(.o
Integration of (3.10) under the bourzarycondition v=vo, d 1=0

for r=a-l yields

log(v/vo) - - log r . (3.11)

It is of interest to note that h/h and v/V plotted versus r

in Pigs. 5 and 6 respectively (heavy lines) depend also on the

meridional stress d/d o .

4. Linearised yield condition.

In treating the problem under discussion, Swift [6]

used the linear yield condition of Tresca [1] in conjunction with

the flow rule of Saint Venant and von Mises [7]. This, however,

does not significantly simplify the analysis presented above.

Prager [8] then pointed out that the problem could be solved in

closed form if the linear yield condition was combined with the

flow rule associated with it by the principle of maximum plastic

dissipation [4]. While this simultaneous linearisation of yield

condition and flow rule gives good results as far as the stresses

are concerned, Sokolovskil [9] drew attention to the fact that

it does not furnish thickness changes that agree well with those

predicted by the yield condition of von Mises and the flow rule

of Saint Venant and Levy.

Since we may find it desirable to replace the

elliptic arc AB in Fig. 2a by one or more straight segments, we

formulate the linearised treatment in some generality.
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Let L(d ld;) and M(dl,0 2 ) be two arbitrary points

on the yield ellipse (Pig. 2a). The line LM has the equation

P a m(d1-61) - (62-d;) 0 , (14.1)
III , It

where m - (d-d 2 )/(d 1 -i). According to the yield condition

(4.1), the flow rule (2.7) furnishes

;1/;2 - (dv/dr)/(v/r) = -m . (14.2)

The equation of incompressibility (2.6) now reduces to

rdh _(1-_m) (4.3)hdr

The set of three equations (2.4), (4.1) and (4.3) are the govern-

ing equations of the linearised treatment of our problem. Sub-

stituting from (4.1) and (4.3) into (2.4), we obtain

dd1 - (d-rn) -r (4.4)
i i

Remembering that at the point L, dl=d1 and a2 -%2, and denoting

the values of r, v and h at this point by r', v I and h', we

integrate (4.2), (-.3) and (4.4) to find

V, - (I)m o 14~

rn (14.6)S I !

1 M d 1 + (d2_mnl)log r. (4.7)

Substitution of (4.7) into the linearlsed yield condition (4.1)

finally furnishes

02 = d; + m(d2ml)log r. (4.8)
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5. Single linear yield condition.

Since the radius of the die exit has to be larger

than 0.40377, let us consider b - 0.405. In place of the elliptic

arc AB, we shall consider the straight segment LM as the yield

locus (Pig. 2b). As 01-0, and d2 < 0 when r-a=l, the point L

must coincide with A, whereas the position of B on the linear

yield locus is not known at this stage. With the help of the

boundary conditiom(2.8), the equations (4.5) through (4.8)

reduce to

v/vo - 1/r
h/h O = r

d /d o = -logr

d2/d o = -(l+logr).

The meridional stress dl/ ° obtained through the above procedure

agrees sufficiently well with that of the theory of von Mises

(Pig. 3). The thickness h/h0, circumferential stress 12/0, and

velocity v/vO are more at variance (Pigs. 4, 5 and 6).

6. Two or more linear yield conditions.

In trying to improve our results, we may approximate

the elliptic arc AB by more than one straight line so as to stay

closer to the arc. In the problem at hand, we may take the

straight line segments LX,, M'K and if necessary MAI (Pig. 2b).

where

j(M,) -o.5d ; d(K) - % ; d(A,) 1. 154 do



c11-85 11

Substituting m = 0.69722 for the slope of LM' into equations (4.5)

through (4.8), we obtain
v_. ._ 69722
V - Pl 9  61

h (1. 030278 (6.2)

ho og P (6.3)h0

d 2

-0.30278 logr . (6.4)

Since L-(M') - 0.5, the equation (6.3) gives r(M') - 0.60653.
0

The first linear yield locus, therefore covers the range

I > r I 0.60653.

The next segment of the tube either corresponds to

a fixed state of stress at M' and strain rate vectors that vary

between the normal to LM' and the normal to M'M, or the next

segment corresponds to the line M'M. The first situation cannot

arise, because the equilibrium equation (2.4) can be re-written

as

ddIr-- (I + - + 2) - o

and if oI and d2 were constant, the ratio '1/'2 would also have

to be constant in contradiction to the assumption of varying

direction of the strain rate vector.

If we think of the point M' as having the co-
o (ordinates di, o2 , the forimulas (J&.5 ) through (1&.8) apply on the
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two sides of this point with different values of the slope m.

This shows that we can make v, h, 01 , and 02 behave in a con-

tinuous manner as we go from one segment to the next. Since v

is continuous, £2 - -v/r is also continuous, but il -dy/dr

and £3 - -(v/h)dh/dr are not. These discontinuities, however,

are permissible.

The line MItM has the slope 1.30278, so that formulas

(4.4) through (4.8) yield

v/vM, = [(0.60653/rjll30278 , (6.5)

h/h M , - [(0.60653)/r]-030"78 , (6.6)

01/0 0 - 0.5 - (1.30278) log r , (6.7)

do o  -0.65139 - (1.30278)2 log r (6.8)

for 0.60653 > r 2 r(M). Substituting for di/o = 1 in equation

(6.7), we find

r(M) - 0.41321.

For values of r < 0.41321, we continue the above procedure along

the line MAI. Proceeding in a similar manner, one obtains

r(A') - 0.39643

so that the point B corresponding to r - 0.405 falls on the

segment MA. The quantities d%/% , 2/%, h/h0 s and v/v °

as obtained from the above process of three linear yield condi-

tions are plotted in Figures 3, 4s, 7 and 8 respectively.
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Since the linearised treatment developed above

gives satisfactory results for d1 (Pig. 3), we can obtain better

approximations for 02 by substituting oI into (3.1). We may

also try to improve v and h by substituting the stresses from

the linearised theory into the differential equations (3.3) and

(3.4) of the von Mises theory, as is discussed in the following

section.

7. Modified linearJRed procedure.

Substituting (4-.7) and (4.8) into (3.4) and then

integrating, we obtain

h

log log 1 log

l m rlr') + 1 - 2 'd 1 "

(7.1)

Where h-hI when r-ri.

Substitution of sl/d and o o from (4.7) and (4.8)

into (3.3) and Integration of the resulting equations furnishes

log v-

2-i log (1-2m)(d; md1) o r
=M o (r/r') + (-)2-M)log - log . 2 2-( I

Whero v-v' when r-r'. (7.2)

Finally, with the aid of (7.1), equation (7.2) can

be put in the simple form

v/v' - l/(r/r')(h/hl'). (7.3)
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Single Linear Yield Condition. When the yield locus is the

segment L in Fig.(2b), on using the bourdary condition, the

equations (7.1) and (7.3) give

log H- -2[log r - - log(l + " log0olog r)] (7.)

and

v_ l/(rh)/ho. (7.5)
To

The curves h/h and v/v o versus r given by (7.4) and (7.5) are

shown in Figs. 5 and 6 respectively.

Two or More Linear Yield Conditions (Fig. 2b). When the yield

locus consists of straight segments LM', M'M and MA' (§5), we have

along LM* (for 1 > r 2 0.60653):
I I

m 0.69722, 0 =O, 0 2 - -do, r' - 1, h' = ho, v' - vo

along M'M (for 0.60653 > r > 0.141321):
i I

m- 1.30278, dI - 0.5do, d2 - -0.65139, r' - 0.60653,

h'- (h)M,, v,- (v),

along MA' (for 0.41321 r > 0.36695):

m - 3.73206, d - dos - 0, r' - 0.41321,

h- (h)M, v'- (v)M.

The equations (7.1) and (7.3) with the help of above data

provide us the curves h/h and v/v versus r(0.405 < r < 1)

plotted in Figs. 7 and 8. It is clear from the comparison of

graphs in Figs. 5-8 that the deformatiors h/hd velocities v/vo
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obtained through the above modified procedure of using linearised

stresses in von Mises flow rule are in almost complete agreement

with those obtained from von Mises theory directly.

For smaller drawing such as b-0.7, only one linear

yield locus LM' (Fig. 2b) should be appropriate. The Figures

3, 4, 7 and 8 exhibit clearly that in such a case both the

linearised procedure and the modified linearised procedure give

excellent results.
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PART II. The Nosing of Shells.

8. Basic relations.

Consider the forming of an ogive nose at the end of a

tubular part by pressing the tube into a well lubricated suitably

formed die (Fig.9a). Using Tresca's yield condition and the

corresponding flow rule, Onat and Prager [10] analysed the

stresses and changes in wall thickness. The present discussion

will be restricted to moderate degrees of penetration of the

tube into the die, and the wall thickness will be treated as

small in comparison to the radius of the tube so that the varia-

tion of stress across the thickness may be neglected. As in

Part I, the meridional and circumferential stresses 61 and 2

far exceed the normal pressure p, and the problem can therefore

be treated as one in plane stress with a1 and 02 as the principal

stresses.

Consider a shell element of the wall thickness h and

the radius r - R cos q-a (for notations, see Eig.9a). The

equilibrium requirement furnishes the equation,

dL(hd ) + ~dr 1 r 102) . (.)

Writing the yield condition as

f(Old 2 ) - o, (8.2)

we use the flow rule

1  TO. 2 Td (X o) (8.3)
1 2
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As before, the equation of incompressibility gives

v dh dv (8.4)
hdTr dr r

These equations must be solved subject to the boundary conditions

i W 0 for c -4p i.e. r-rI , (8.5)

-v,.,h-hOP forqy-0 i.e. r-a-l. (8.6)

Except for the boundary conditions, the problem is therefore

quite similar to that of Part I, so that we may apply the

procedure of Part I to the present problem.

9. von Mises yield condition.

For plane stress, yield condition of v.Mises is given

by

2 _ 12. O'P(9.1)a1 - $102 + d2 o

where o is the yield stress in simple tension. The flow rule

gives

'1/'2 = (-dv/dr)/(-v/r) = (2d,-d 2 )/(2d2 -d) (9.2)

In the stress space with the rectangular cartesian co-ordinates

dI and d2 , the equation (9.1) represents an ellipse, and the

point A representing the state of stress 1-O, d2 < 0 at the

free end of the nose of the shell lies on the d2 axis (Fig.9b).

Once again the position of the point B which represents the

stress state at the die entrance r-a-l is confined to the arc

AA, of the yield ellipse (Fig.9b), because at A', the tangent is

parallel to the o2 axis (see the discussion in Section 3). The
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equations (8.1), (8.4), (9.1) and (9.2) with the boundary condi-

tions (8.5) and (8.6), furnish the solution

[ 61 j(do )  + 3I are sin(2 Li) - log (9.3)

22

0 00 od 9 4

log h= - Io3-(L)2 -_ d + 2 log r] , (9.5)
ho or2d doatrZ-l

lo o-- .i(d) - 1(-01) -f1 log r =-log (9.6)lo 0o o oat r=1 2 o;

It should be noted here that unlike the problem in Part I, all

the quantities d11d2,h, and v in this problem depend upon rl,

the degree of penetration of the tube into the die.

The fact that the point B is restricted to the arc AA'

implies that for r-l, the ratio di I has the maximum value

1.15470. Substituting this in (9.3), we obtain rI - 0.40377.

Thus, for the present analysis to be valid, rI must be greaterl+r 1
than o.40377, that is T, = arc cos(----) must be less than

0.79275.

In particular, let us consider T1 -0.75 so that

rI - 0.46337. The quantities 0 1 /6 0 , d2 /', h/h0 , and v/v 0 as

evaluated from equations (9.3) through (9.6), are shown as

functions of r by the heavy lines in Figures 10, 11, 12, and

13, respectively.
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10. Single linear yield condition.

We now approximate the elliptic arc AB by a single

straight segment LX (Pig.9b). The point L which represents the

state of stress at the free end of the tube coincides with A,

whereas the position of B on the linear yield locus LM is not

known at this stage. The line LM has the slope m-0. With the

use of the boundary conditions (8.5) and (8.6), the equations

(-.5) through (4.8) yield

v/v0  = (h0 )/(rh) - 1 * (10.1)

h/ho - 1/r , (10.2)

-jldo - log(r/r1 ) , (10.3)

% -- . (1o.4)

Setting 01/60 - -1 in (10.3), one finds

r(M) - 1.25958,

so that r(B) = 1 lies on the segment LM. The plots of dl/do,

2/009 h/ho, and v/v 0 as functions of r are shown in Figures

10, 11, 12, and 13, respectively.

11. Two linear Yield conditions.

To improve the results, we replace the elliptic arc AB

by two straight line segments L', and MM. To stay close to

the relevant arc of the yield locus, we choose the point M' at

the lowest point of the ellipse (Fig.9b), where oI(M)--0.57735do

and 02(M')=-i.15470%. Accordingly, the line LXI has the slope
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m-0.26795 and the line MM the Slope m'--0.36602. With the aid

of (8.5) and (8.6), the equations (4.5) through (4.8) now yield

v/vo - (r,)mrm'/(r)m . (11.1)

h/ho - (r,)m'-m/(r)l-m , (11.2)

=/o - -log(r/r1 ) (11.3)

=/ o -1--m log(r/r.) " (11.4)

The equation (11.3) gives r(M') - r' - 0.8254I1. This set of

formulas is valid in the range 0.46337 < r < 0.82541. Along

M'M, we find

v/vo - (l/r)m' * (11.5)

h/ho = (1/r)l- ', (11.6)

=/o - -0.57735 + (m'-2)/3* log(r/rt) , (11.7)

-2/do - -1.15 470+ log(r/r,) . (11.8)

Substituting -1 for 02/oo in (11.8), we obtain

r(M) - 1.1247o.

The point B(r-l) thus lies on the segment M'M.

12. Modified 3.inearised procedure.

The comparison of Fig. 10 with Figures 11 through 15

shows again that the process of linearisation gives the stress

d1 in good agreement with that of the von Mises theory, the

stress d2 the thickness h and the velocity v still could be



21

improved. To achieve this, we apply the procedure of Section 7,

substituting 01 into (9.1) to obtain d2, and putting the

stresses from the linearised theory into the differential equa-

tions (3.3) and (3 .4) to get

log h- -

.~j±[(log(r/rQ) + log l - l2)dw)log(r/rt)}],2d 2-dl

(12.1)
and

v/v, - l/(r/r')(h/h,), (12.2)

where h-ht, v-vt when r-r'.

Single Linear Yield Condition: Since the slope m of the line

LM (Fig9b) is zero, equation (12.1) gives

log(h/hl) - [log(r/r) + 3 log(l - log r/rl)]. (12.3)

With the use of the boundary condition (8.6), equations (12.2)

and (12.3) reduce to

log(h/ho) - log r + 3 log(l - 1I r) (12.4)0 2+iog r,

and

v/vo - (ho)/(rh). (12.5)

The values of h/h and v/vO so obtained are plotted in Figs. 12

and 13.

Two Linear Yield Conditions. (list.9b): Along the line LM',,

whose slope m is 0.26795, equations (12.1) and (12.2) yield
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log h -

v/v0 = (ho)/(rh) (12.7)

for the range 0.46337 < r < 0.82541, whereas along the line

M'M with the slope m - -0.36602, we have
h

log -r 

(12.8)

v/vo = (ho)/(rh) (12.9)

for the range 0.82541 S r 1.

From (12.8) and (8.6), it follows

log 0T -

~~1-2(-log r' + ry -i log l + (12)(2-m:!. log r}j].

(12.10)

The use of (12.6) now yields the values of h/h o in terms of r

along the line LMI. The relations according to the equations

(12.6) through (12.10) are plotted in Figures 14 and 15 for

values of r from 0.46337 to 1. The comparison shows that the

above procedure gives results that are practically Identical

with those of the von Mimes theory.

If the penetration of the tube is small, such as

0.6 < r < 1, only one linear linearised yield locus LM' is needed.
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For setting d1/ d o - -0.57735, and rI - 0.6, the equation (10.3)

gives

r(M') - 1.06878

so that the linear yield locus LM' covers the entire range

1 & r < 0.6. Rather setting d1/d 0 - -0.57735 and r-l, the

equation (10.3) yields

rI - 0.56138

so that for penetrations of the range 0.56138< r < 1, the single

linear yield locus LM. is sufficient to give good results.

Discussion.

The Figures 3 to 8, and 10 to 15 show that in both

problems, drawing of tubes and nosing of shells, the modified

linearised procedure closely approximates the results of the

von Mises theory. A single linear yield condition is suitable

only if the changes in diameter are small. In all other cases

two or more linear yield conditions must be used. The

linearised procedure then gives continuous stresses, thicknesses,

and velocities, but discontinuous first derivatives. In the

modified linearised procedure these discontinuities do not

appear.
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h,: initial thickness

h : thickness of tube at radius r

b: radius of tube at die exit

a: radius of tub* at die enrac taken as unit

of length

a:meridional stress
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